8th Grade Math **Essential Standard(s)** Learning Targets for Essential Learning Targets for **Supporting Standards Standards Supporting Standards** Unit 1 (24 Days) I can translate, reflect, rotate and MGSE8.G.1 Verify I can prove that figures are MGSE8.G.2 Understand that a Transformations two dimensional figure is dilate two-dimensional figures. experimentally the congruence congruent after being Congruence properties of rotations, reflections, rotated, translated and congruent to another if can be and Similarity I can describe and perform a and translations. reflected. created by a sequence of sequence of transformations. translations, rotations or I can identify and find the MGSE8.G.3 Describe the effect reflections. I can use a sequence of measures of angles formed of dilations, translations, translations, reflections, and rotations and reflections on two by parallel lines and a **MGSE8.G.4.** Understand that a transversal. rotations to show that figures are dimensional figures using two- dimensional figure is similar congruent. coordinates. to another if the second can be I can find the interior and obtained from the first by a I can use a sequence of MGSE8.G.5 Use informal exterior angle measures of a sequence of rotations, reflections, transformations, including arguments to establish facts triangle. translations, and dilations; given dilations, to show that figures are about the angle sum and exterior two similar two- dimensional angle of triangles, about the similar. angles created when parallel lines figures, describe a sequence are cut by a transversal, and the that exhibits the similarity angle-angle criterion for between them. similarity of triangles. Unit 2 (42 Days) MGSE8.EE.7 Solve linear I can solve multi-step equations. MGSE8.EE.7a Give examples of I can determine the number of **Exponents and** linear equations in one variable with equations in one variable. solutions an equation has. one solution, infinitely many Equations I can use multi-step equations to solutions, or no solutions. I can identify if a number is model and solve real-life rational or irrational. problems. MGSE8.EE.7b Solve linear equations with rational number I can compare and order rational coefficients, including equations and irrational numbers. whose solutions require expanding expressions using the distributive I can find square roots and cube property and collecting like terms. roots of rational numbers. MGSE8.EE.1 Know and apply the properties of integer exponents to I can solve equations including generate equivalent numerical squares or cubes. expressions. I can use properties of exponents to write equivalent expressions.

Cartersville Middle School Curriculum Map

	MGSE8.EE.2 Use square root and	I can use scientific notation to
	cube root symbols to represent	write very large or very small
	solutions to equations. Recognize that	numbers.
	$x^2 = p$ has 2 solutions and $x^3 = p$ has	
	one solution. Evaluate square roots of	L can perform operations
	perfect squares < 625 and cube roots	with numbers in scientific
	of perfect cubes > -1000 and < 1000 .	with numbers in scientific
		notation.
	MGSE8.EE.3 Use numbers	
	expressed in scientific notation to	
	estimate very large or very small	
	quantities, and to express how many	
	times as much one is than the other.	
	MGSE8.EE.4 Add, subtract, multiply	
	and divide numbers expressed in	
	scientific notation, including problems	
	where both decimal and scientific	
	notation are used. Understand	
	scientific notation and choose units of	
	appropriate size for measurements of	
	very large or very small quantities.	
	Interpret scientific notation that has	
	been generated by technology (e.g.	
	calculators).	
	MGSE8.NS.1 Know that numbers	
	that are not rational are called	
	irrational. Understand informally that	
	every number has a decimal	
	expansion: for rational numbers show	
	that the decimal expansion repeats	
	eventually and convert a decimal	
	expansion which repeats eventually	
	into a rational number.	
	MGSE8.NS.2 Use rational	
	approximation of irrational numbers	
	to compare the size of irrational	
	numbers, locate them approximately	
	on a number line and estimate the	
	value of expressions	
	value of expressions	

Unit 3 (15 Days) Geometric Applications of Exponents	MGSE8.G.7 Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensional.	I can use the Pythagorean Theorem to find unknown sides of triangles. I can use the Pythagorean Theorem to solve problems.	 MGSE8.G.6 Explain a proof of the Pythagorean Theorem and its converse. MGSE8.G.8 Apply the Pythagorean Theorem to find the distance between two points in a coordinate system MGSE8.G.9 Apply the formulas for the volume of cones, cylinders, and spheres and use them to solve real-world and mathematical problems. 	I can use the Converse of the Pythagorean Theorem to identify right triangles. I can use the Pythagorean Theorem to find the distance between two points on a coordinate plane. I can find the volume of a cylinder, cone and sphere.
Unit 4 (10 Days) Functions	MGSE8.F.1 Understand that a function is a rule that assigns to each input exactly one output.	I can tell whether a relation is a function. I can identify functions by their equations, tables and graphs.	MGSE8.F.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). MGSE8.F.3 Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.	I can compare linear and nonlinear functions. I can describe the behavior of a function and write a description to go with its graph.
Unit 5 (18 Days) Linear Functions	 MGSE8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. MGSE8.F.4 Construct a function to model a linear relationship between two quantities. Determine and interpret the rate of change and initial value of the function from a description, two points, a table or from a graph. 	I can identify slope(ROC) from a graph, two points, a table and an equation. I can identify the y-intercept (initial value) from a graph, two points, a table and an equation. I can graph a linear function. I can write equations to describe linear relationships.	MGSE8.EE.6 Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b.	I can understand the slope of a line. I can find the y-intercept of a graph and explain what it means. I can derive the equation y = mx + b.

Unit 6 (19 Days) Solving Systems of Linear Equations	MGSE8.EE.8 Analyze and solve pairs of simultaneous linear equations (systems of linear equations).	I can solve a system of equations by graphing, substitution and elimination. I can solve real world problems that involve two linear equations.	 MGSE8.EE.8a Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. MGSE8.EE.8b Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. MGSE8.EE.8c Solve real-world and mathematical problems leading to two linear equations in 	I can solve simple cases by inspection.
			two variables.	
Unit 7 (10 Days) Linear Models and Tables	MGSE8.SP.3 Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	I can use scatter plots to describe relationships between data. I can find an equation of a line of best fit. I can use a line of best fit to make predictions.	 MGSE8.F.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. MGSE8.F.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph e.g., where the function is increasing or decreasing, linear or nonlinear. Sketch a graph that exhibits the qualitative features of a function that has been described verbally. 	 I can construct a scatter plot and use it to understand the relationship between paired data. I can use a line to represent the relationship between the paired data. I can make a prediction by using the equation of a line that closely fits a set of data. I can display and interpret relationships between paired categorical data. I can find the relative frequencies of two-way tables and interpret what they mean.

	MO	GSE8.SP.1 Construct and	
	inte	terpret scatter plots for bivariate	
	me	easurement data to investigate	
	pat	atterns of association between two	
	qua	antities. Describe patterns such as	
	clu	ustering, outliers, positive or	
	neg	gative association, linear	
	ass	sociation, and nonlinear	
	ass	sociation.	
	M	GSE8.SP.2 Know that straight	
	line	hes are widely used to model	
	rel	lationships between two	
		antitative variables. For scatter	
	qui	ots that suggest a linear	
	960	sociation informally fit a straight	
	line	and informally assess the	
	mo	adal fit by judging the closeness	
		the data points to the line	
	010	the data points to the line.	
	MO	GSE8.SP.4 Understand that	
	pat	atterns of association can also be	
	see	en in bivariate categorical data by	
	disj	splaying frequencies and relative	
	free	equencies in a two-way table.	
	a.	a. Construct and interpret a two-way	
	ta	able summarizing data on two	
	ca	categorical variables collected from	
	th	he same subjects.	
	b.	b. Use relative frequencies	
	са	calculated for rows or columns to	
	de	lescribe possible association	
	be	between the two variables.	